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The basic formulas for equilibrium thermofield dynamics are derived using an elementary group-
theoretical approach. The formalism is then used to derive Wick’s theorem as an operator relation at

finite temperature.
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I. INTRODUCTION

Wick’s theorem, relating time-ordered operators to
their normal-ordered form, is a basic theorem in the
derivation of diagrammatic perturbation expansion in
many-body theory [14]. The usual derivation is given via
an operator relation in the zero-temperature, 7 =0 case.
In the T5-0 case the relation is given in terms of expecta-
tion values. In the following we show that thermofield
dynamics (TFD) which reduces T#0 problems to 7 =0
ones (through doubling the number of degrees of free-
dom) allows the derivation of a T+0 operator relation.

As this paper is mainly pedagogical, we present in Sec.
I a brief discussion of a peculiarity of quantum
mechanics—namely, entangled states (ES). We give the
relevance of ES to Bell’s inequalities, which are also
touched upon in this section. Then the ES’s relevance to
mixed states is presented. Section III contains a deriva-
tion of some results of equilibrium thermofield dynamics
in, perhaps, a somewhat novel way. Section IV includes
the general perturbation expression for the grand canoni-
cal partition function (GCPF) which provides the settings
for our main problem, viz., derivation of Wick’s theorem
at T0 as an operator relation. This is done in Sec. V.
Section VI contains some concluding remarks and com-
ments on Bose-Einstein condensation (BEC), as viewed
from our approach. Some of the detailed mathematical
proofs are relegated to the appendixes: Appendix A con-
tains a summary of (known) results of the SU(1,1) Lie
group, while Appendix B provides the detailed proofs of
the two steps needed in the derivation of Wick’s theorem.

II. ENTANGLED STATES

In this section we define entangled states [1] and give a
brief discussion of their relevance to Bell’s inequality [2]
(BIQ) and to generation of mixed states (MS). The first
(BIQ) aims at underscoring the intrinsic quantum-
mechanical (QM cal) nature of ES, while the second (MS)
is relevant to our problem of nonzero temperature
(T#0).

An entangled state [1] is a state of two (or more) sys-
tems (e.g., particles) which cannot be written as a prod-
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uct. A famous example [3] is the S =0, two spin-1 parti-
cles, labeled 1 and 2:

S _
|¢(1,2)>—\/§[|71>|¢2> [L1)[12)]. (1)

Here the spin space o of each particle is two dimensional:
(1,1). That ES, which are so common in QM, are ep-
istemologically difficult was noted .by Schrodinger him-
self, who coined their name.

It is, perhaps, not surprising that such states cannot ex-
ist within classical physics. To see that this indeed is the
case, we shall now present a brief discussion of Bell’s
inequality —the violation thereof is a peculiarity of quan-
tum mechanics. Bell [2] noted that for physical systems
to possess local objective properties—i.e., such that are
independent of observations—implies certain inequali-
ties, the BIQ. Classical physics cannot lead to Bell’s in-
equality violation (BIQV). QM, however, for certain
states [e.g., Eq. (1)] may lead to BIQV. Thus, BIQV’s can
be taken as fingerprints of QM.

Now it has been shown [4,5] that whenever a system is
in ES, BIQV can be concocted. Furthermore, if the state
is a product state, no BIQV is possible [5]. Thus, we con-
clude that the presence within QM of ES is the root of
this (the BIQV implications) conceptual difficulty. A
more general way to prescribe a state in QM is via a den-
sity matrix p. It was shown by von Neumann [6] long
ago (1930s) that a pure QM cal state (i.e., such that
p>=p) of two particles (or systems) can be a mixed state
(i.e., p?#p) for one of the constituent particles. Thus for
the state |1(1,2)) given in Eq. (1) we have

p(1,2)=]9(1,2))(¥(1,2)] , 2)
[p(1,2)1P=p(1,2) . 3

If we now consider

p(H= (o?|¥(1,2))(¥(1,2)|0?) 4)
02
:2%'01><01| , (5)
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i.e., particle 1, p(1), whose density matrix is obtained via
tracing out particle-2 coordinates is in a mixed state:
pX(1)#p(1). This can happen only in QM, as can be seen
as follows: Defining [6,7] entropy,

=—Tr(plnp) . (6)

We have in QM the Araki-Lieb inequality [7-9]

[S(1)—S(2)] <8(1,2) <S(1)+S(2) . (7
Here,

pj)=Tr;p(i,j), i,j=1lor2, (8)

S(j)=—Tr[p(jnp(j)], 9)

S(i, j)=—Tr[p(i, )Inp(i, )] . (10)
The “corresponding” classical theorem [7,9] is

max{S(1),5(2)} <8(1,2)<8(1)+S8(2) . (11

Thus, whereas classically whenever the entropy of the
combined system is zero,

S(1,2)=0. (12)

Equation (11) implies S(1)=S(2)=0 (S =0). In QM the
situation is quite different: all that (12) implies is that

S(1)=S8(2) . (13)

Now, obviously, if p(1,2)=p®p(2), then S(1,2)
=S5(1)+S(2), and S(1,2)=0 implies, as in the classical
case, S(1)=S(2)=0. However, if we deal with an ES,
p(1,2)7p(1)®p(2). In this case we have that each of the
constituent systems is in a mixed state while the com-
bined system is in a pure state.

It is trivial to show that every mixed state can be
looked upon as the result of tracing out of the coordi-
nates of another (image) system where both systems
(physical and image) were in an appropriately chosen
pure state. We argued that the original pure state must
be an ES. Thus, for example, a judicial choice of an ES
could lead to a thermal density matrix for a physical
state.

III. EQUILIBRIUM THERMOFIELD
DYNAMICS (REFS. [10,11])

In this section we consider a pure boson (“physical”)
field in thermal equilibrium. We consider one mode only
for simplicity. The Hamiltonian is (%=1)

Hy=wa'a , (14)
with
[a,a'1=1, [a,a]=[a%,a’]=0. (15)

H, is diagonal in the occupation number representation:
In),n=0,1,2,...;al0)=0.

We now introduce an auxiliary (“tilde”) field which
forms a pure (entangled) state with the physical field and
leads, upon being traced out, to a thermal state for the
physical field. Standard TFD considerations [10,11] as
well as the Araki-Lieb formula [Eq. (7)] suggest for the
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tilde field the image field. It is described by @, the annihi-
lation, and @ T, the creation operator, with

[a,a'1=1, [a,a]=[a’,a’1=0. (16)

The occupation space of the tilde field is denoted by |7 ),
7=0,1,...; @|0)=0. All tilde operators commute with
nontilde ones. With the aid of this tilde field, we may
write

«Ga"a))=Trle "G (at,a)]/Tre #,  (17)
with G(a',a) an arbitrary function of the (physical) field
operators a,a ', as

(Ga"a))=(yylGla,a)lpy) . (18)
Using [12]
o TP
[y ) =—= lm,m) , (19)
m=m-+N

i.e., the thermal expectation value is expressed as an ex-
pectation value of G(a',a) in a pure entangled state.
N =0 is an arbitrary integer. Notice that (7 —m ) may
be taken as a constant N, since the Casimir operator € of
su(1,1) depends only on (7 —m). As C commutes with
all operators in the algebra, it is a constant. In the fol-
lowing and in Appendix A we justify the relevance of
su(1,1) of our problem:

Zy=3 (mmle " m,m), (20)
m=0
m=m+N
K;=1=[a'a+aa']. 21)

The validity of Eq. (19) is shown in Appendix A where, in
addition, an alternative rationale for expression (19) is
given.

A particularly simple expression obtains for N =0
[12,13]:

9B =—=e AP K 4 0,5)
VZ
K,=a'a' (22)
Thus,
[9(B))y =—=¢""""+10,3) , (23)
VZ
tanh?y =e ~5¢ 24)
We note that [13]
K_=(K,.)'=aa (25)
closes an algebra [su(1,1)] with K, and K _ :
[Ki,K,]=%K, , (26)
[K ,K_]1=—2K, . (27)
Hence we may use this algebra to express
Uly)=e"™+ 7%~ (28)
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in its normal order (i.e., creation operators to the left of
annihilation operators):

tanhyK | —2In(chy)K, —tanhyK _
e e e .

Uly)= (29)

Hence, direct application on the vacuum (|0,0)) state
yields

lyY=U)[0,0)=|¥(B)) . (30)
Hence, we have finally
«G(a’,a))»=(0,0lU'(y)G(a",a)U(y)|0,0) . (31)

Thus, thermal averaging is equivalent to the zero temper-
ature (i.e., vacuum) expection value of the transformed
operator

Ga'a)=U'y)G(a',a)U(y) . (32)

This is the well-known TFD result [10] for the equilibri-
um case of free bosons.

IV. THE GRAND CANONICAL PARTITION
FUNCTION FOR INTERACTING BOSONS

The GCPF for interacting bosons is given by [14]
—BHy+V)

Z(B,u,V)=Tre (33)
Here,
Hy=Y (e —,u)a,:rak , (34)
k
V= 2 V(q)a;+qa;:_qak:ak . (35)
gk, k'

Standard many-body theory procedure [14] allows us to

—foﬁV(’r)dr] ]»0

ZByu, V)=Zo(B,, V) + «T
(36)

Zy(B,u, V) is the GCPF for free particles, i.e., with H; as
the Hamiltonian, T, is the 7 ordering operator [14], and
+HyT —H,T

Ve °, (37

exp

Vir)=e

i.e., in the interaction representation. The double brack-
ets are defined via (A is an arbitrary operator)

“BHO

« A Ne=Tr(e " 4)/Tre (38)

Our argument of Sec. III is now applicable and allows us
to equate [henceforth, |0) designates the double vacuum
of (30)]

«an=Col[lum ) aum)lo) , (39)

UT)=TI Ulre) (40a)
k

U(»}/k)zeykKk+_7kKk— , (40b)

tanhly, =e 2% H 41)

K., =alg), K, =K, ). 42)

Thus we have for
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«T, [exp [—- foﬂV(T)dr

I,

=(ol. [exp [~ [ Prrar | o). @
with
Vin=U'mvn=um). (44)
Or, defining b operators by
be=U'(y)a (1U(y,)
=[cosh(7k)ak—sinh(‘yk)aj]e_(e"*mf , (45)

with similar definitions for b;, b;, and b, we rewrite the
interaction with b’s replacing a’s. This is possible be-
cause the 7 dependence of the a’s (and hence of the b’s) is
trivial, e.g.,
— (€, —p)
a(r)=e * *q, . 46)
The result of the above is that, upon expansion of the
exponential in (45) after extracting the 7 factors, we must
evaluate

(0| 4B...XYZ|0) , 47)

where A4,B,C,. .. are b or b and we may consider each
mode separately. (The operators appear, of course, in a
prescribed order that was dictated by their 7 depen-
dence.) We now come to our main point: obtaining an
operator relation between ABC --: and appropriately
defined N operator [14]. To this end, we define N order-
ing of the b,b* operators as the usual N ordering of their
a,a’ constituents, e.g., (c =coshy, s =sinhy)

Nbb)=c2aa+sa'a—cs(@la’+aa)

#b'b . (48)
The reason is that the vacuum is defined as the vacuum
of the a,a operators and the above definition assures that

(O|N(AB ---XYZ)|0)=0, A,B,...: borb'. (49
The contraction of 4 and B, E, is defined as usual:
AB=AB—N(AB) . (50)

Note that the order of AB in the contracted pair is im-
portant (as in the usual case [15])

BA# 4B . (51)
We show in Appendix B that AB is a C number:
bklb,(2 =cosh?(y, )Skl’kz , (52)
+ . 2
bklbkz—smh (Ykl)skl’kZ . (53)

All the other contractions are zero. We also show in Ap-
pendix B that

ABC -~ XYZ=N(ABC --- XYZ)+ ABN(CD - - - XYZ)
+ ACN(BD - - XYZ)+ - - -
+ AB CDN( - - )
+ABCD - YZ+ -+ , (54)
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i.e., a given string of ordered operators is equal to the
contractions and normal-ordered operators in an opera-
tor formula which is identical in appearance to the one
valid at T=0. Now (49) implies that the only contribu-
tions to (43) are the terms with all pairs contracted. This
formula differs from the zero-temperature case only in
that whenever AB+0 for 7, > 75, it is also nonzero for
T > T4, where 7, is the 7 of the operator A4, etc. (The
case 7,=rp is identical to the T =0 case, viz., it can
only occur for a@’s already normally ordered.)

Thus we have retrieved the standard diagrammatic ex-
pansion via an operator-relation Wick’s theorem. Note
that N( ABC - - - ) cannot be written as a product of ABC
in any order. It is, rather, a function of 4,B,C,.... We
illustrate the above in getting the lowest-order term in
perturbation:

~ Tt
(Olbg ay b be 100k, 4k, =k, +k,

=(bII‘bk3 qubk4+blzlbk4 b, bx W8k ke +k,
=Sinh2'}’k1 Sinhz('}/k2 )(8k1+k38k2+k4

86, 1k, Bk, k) - 3)

Thus we recover the standard expression with [cf. Eq.
4n)]

1

sinh?y, = ———— .
=
W

(56)

As Eq. (46) implies, the explicit 7 dependence is to be
added and is the 7 dependence of the a’s, i.e. [cf. Eq. (45)],

by(1)=e (& —“)f[cosh(yk Jay +sinh(y, )511] ’ (57)

+(e, —p)T

bl(r)=e [cosh(y, )a] +sinh(y, )@, ].  (58)

This 7 dependence assures us the correct 7 dependence
for the free Green’s function:

GAr)=—(T[b,(Pb}(O)]) (59)
—b(7)b(0), 7>0 (60)
—bi(0)b (1), 7<O0. (61)
These lead to
—e ST cosh’y,, 7>0 (62)
G;?(T)_—’ —(e—p)ir . L,
—e Kk sinh?y,, 7<0. (63)

Thus we have

GY(7)=GXr+B), r<0. (64)

V. SUMMARY

The relevance of the peculiarly quantum-mechanical
states—the entangled states—to the expression of a
physical mixed state as a pure state of an image (designat-
ed as tilde) system entangled with the physical system
was presented. The particular case of a thermal (physi-
cal) state was assigned to an explicit entangled state pos-
sessing some simple features. This assignment which was
given for the case of free (i.e., noninteracting) bosons was
used to produce a new derivation of Wick’s theorem at
finite temperature (T50). This new derivation gives the
theorem at T50 as an operator relation in analogy to the
case of T=0. Of particular interest in this regard is the
study (now in progress) of Bose-Einstein condensation as
a T =0 problem [12].
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APPENDIX A: ENTANGLED STATE
FOR A THERMAL STATE

In this Appendix we prove Eq. (19). Consider [cf. Eq.
(20)]

pd= S o Bulte=Bom/2g(~Bo/miy 5} 11/ T
pomin
(A1)
This state is normalized,
(Ynlpyd=1. (A2)

Next we calculate the mean value of G(aT,a), an arbi-
trary function of a T,a:

(y|Glat,a)py)

=~Zl‘ 2 e-B"’/ze(_B“’/z’Ne—ﬂ“’"(n]G(aT,a)ln )
N n=0
=Tr[e ~#**"5G(a',a)] /Tre ~Foa'a | (A3)

The reason for choosing the vector space {|m,m+N),
m=0,1,...,0; N20—a fixed number} is that this
space is invariant under the set of operators

K,=(ata+aa™ 2,

K+=aT&'T, K_=a@a=(K, )

The su(1,1) algebra of these operators governs the study
of interest here.

APPENDIX B: PROOF OF SOME RELATION

In this appendix we show that (a) the contraction
defined by Eq. (5) and our N ordering [see Eq. (48) above]
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is a ¢ number and (b) Eq. (54) holds.
(a) The contraction. We have (k+#k’)

bkbkrzbkrbkzo (B1)

because the constituent operators commute. For k =k’
we have

bebr=b;b; =0 (B2)

because the tilde operators commute with the nontilde
ones.

We now consider the cases of Kk =k’ (hence we delete
the index k). Note that the 7 dependence [Eq. (45)] is ir-
relevant, and hence is deleted too. We have [cf. Eq. (48)]

bbT=(ca—sa')ca'—sa)—c’R*a
—s%@'a+es(@a’a’+aa)
=cosh?y , (B3)
while in a similar way we get
bTb=sinh?y . (B4)

Thus we showed that all the contractions give ¢ numbers.
(b) Proof of Eq. (54). The theorem is trivially true if
the indices (k) are distinct, e.g., for k5#k;,i=1,...,N,

beN(by by -~ by )=N(byby b by ) (BS)

because all the constituent operators commute; hence,
by bk.- =0, and the equation holds. Thus we consider the

case of

AN(BC --- XYZ), with 4,B,C,...=b,b', (B6)

all referring to the same mode (i.e., of equal index k). We
prove Eq. (54) by induction. Thus we assume that

AN(BC -+ - XY)=N(ABC -+ - XY)+ ABN(CD - - - XY)
+ ABN(BD - - - XY)+ - - -
+ AYN(BC - - - X) (B7)
and we wish to show that
AN(BC - - - XYZ)=N(ABC - - - XYZ)
+ ABN(CD - - XYZ)
+ ACN(BD - - - YZ)
+ AZN(BC - - - XY) . (B8)

The proof was as follows: First we take Z =b, and con-
sider the left-hand side of (B8):

AN(BC - - XYb)= A[N(BC - - - XY)ca
—sa'N(BC --- XY)] . (B9)

This is obtained by simply inserting the N ordering of the
operators.
Note that if 4 =b, then

AN(BC - - - XYZ)=[N(AB - - - XY)+ ABN(C - - XY)+ ACN(BD - - - XY) - - + AYN(BC - - - X)]ca

—sa'[N(AB -+ XY)+ ABN(C - -

¥

We now reabsorb ca and —s@ ' in the N product to get

AN(BC -+~ XYZ)=N(AB -+ - YZ)+ -+ — ABN(C --- Z)+ AZN(BC - - Y) .

da’=a'4, (B10)
while if 4 =b, then
da’=a"4—s . (B11)
Thus we have for Z =b and A either b or bT,
—sda'=sa'a+AZ . (B12)
Returning to (B9), we have, for Z =b and using (B8)
J
-XY)-- AYN(C -+~ X)]+ AZN(B - - - XY) . (B13)
(B14)

A similar proof goes through for Z =b'. Now the case of N =2 was shown in (a) above. Q.E.D.
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